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We consider computational imaging problems where we have an insufficient number of measurements to
uniquely reconstruct the object, resulting in an ill-posed inverse problem. Rather than deal with this via
the usual regularization approach, which presumes additional information which may be incorrect, we
seek bounds on the pixel values of the reconstructed image. Formulating the inverse problem as an opti-
mization problem, we find conditions for which a system’s measurements can produce a bounded result
for both the linear case and the non-negative case (e.g., intensity imaging). We also consider the problem
of selecting measurements to yield the most bounded results. Finally we simulate examples of the ap-
plication of bounded estimation to different two-dimensional multiview systems. © 2013Optical Society
of America
OCIS codes: 110.1758, 110.6955.

1. Introduction

We approach the computational imaging problem
from an inverse systems perspective. We have a sys-
tem such as in Fig. 1, where light from an unknown
object is collected at one or more detectors. The
points on the object are arranged (in arbitrary order)
into the vector x � �x1; x2;…; xn�T. The collection of
measurements on the detector is arranged into the
vector y � �y1; y2;…; ym�T.

We denote vectors by bold lowercase letters and
matrices by bold uppercase. The relationship be-
tween x and y is derived from fundamental physics
considerations, and given by the forward model,

y � f�x�; (1)

where f�x� is a vector-valued function of x. We assume
the form of f is known. As y is our known data and x is
our unknown object, the problem of estimating x is an
inverse problem. The common approach to solving
such a problem is to minimize the following error
function over all possible x,

ϕ�x� � ∥y − f�x�∥: (2)

Here ∥ · ∥ is a norm function, for example the root
mean-squared error. We focus on cases where n >
m and there are infinitely many potential solutions,
owing to the fact that we have insufficient measure-
ments. We neglect noise and as a result have an in-
finite set of potential solutions x̂ such that f�x̂� � y
and hence ϕ�x̂� � 0. So minimizing ϕ�x� could result
in a wide range of possible results. In this paper, we
consider this range.

The typical approach in this situation is to employ
regularization [1], which modifies the error function
such that there is a unique minimum, in effect
picking a single choice out of the infinite range of
possibilities. For example, a common choice is to
simultaneously minimize the norm of x itself, giving
us the optimization problem

min
x

f∥y − f�x�∥� μ∥x∥g; (3)

where μ is a small regularization parameter, which
trades off the effect of regularization andmodel error.
Neglecting noise and model error, we can consider
the closely related problem
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min
x

∥x∥Subject to f�x� � y; (4)

where we use the model as a constraint. We follow
the standard practice of writing constraints beneath
the minimization objective, so that Eq. (4) is equiv-
alent to Eq. (5):

min
x

∥x∥

f�x� � y: (5)

Here we constrain x to be among the set of objects
that would accurately reproduce our measured data,
and find the object which has the least norm. This
approach is less practical due to the reality of model
error and noise but is a useful theoretical tool to
make the meaning of the results more apparent.

Of course, the most studied situation is the system
where f�x� is well approximated by a linear sys-
tem Ax � y, where A is a m × n matrix. The linear
system where n > m is known as an underdeter-
mined system of equations, in which case we have
a problem of the form

min
x

∥x∥

Ax � y: (6)

When the 2-norm is used (i.e., mean-squared vector
elements) this is analytically solvable and results in
the least-length or pseudoinverse solution [2]. There
is a great deal of recent interest in the case where the
1-norm, the sum of absolute values of elements, is
used [3]. This results in a linear programming prob-
lem known as basis pursuit [4] and is important due
to the fact that with the right conditions it can return
a unique sparse solution. We should be careful to
note, however, that though the system Ax � y still
has infinite solutions in general, it is only with the
additional requirement that x is maximally sparse

(while still reproducing the data) that the solution
may potentially be unique.

A related situation occurs when the unknown, x, is
known to be non-negative. This condition is very
important in imaging, for example dealing with
any optical system which detects intensity, as well
as systems which measure attenuation such as
computed tomography. In such cases we have the
constrained problem

min
x

∥x∥

Ax � y

x ≥ 0; (7)

where x ≥ 0 means xk ≥ 0 for k � 1;…; n. 0 (a bold
zero) denotes a vector of the appropriate size contain-
ing all zeros. If the 2-norm is used here, we have a
version of the well-known non-negative least-
squares problem [2]. For the problem of Eq. (7) there
is also renewed recent interest [5–8], as it has been
found that with the right conditions and with x suf-
ficiently sparse (i.e., the number of nonzero elements
is sufficiently small), the solution truly is unique,
though the precise determination of what sparsity
is sufficient may be very difficult to ever find, and
in practice may never be known. At any rate, a
key mathematical requirement for this case to occur,
or necessary condition, is that the rowspace of matrix
A intersects the positive orthant. This means that a
linear combination of rows can be found which pro-
duces a positive vector (i.e., all elements are strictly
greater than zero). Given this condition, a suffi-
ciently sparse true vector x will mean that the set
of x which fits the constraints above, i.e.,
fxjAx � y; x ≥ 0g, will contain only a single point, also
known as a “singleton.”Hence the above problem will
find a unique result for any choice of norm. In imag-
ing terms, if the object is known to be non-negative
(e.g., we are forming an image of intensity), and if the
matrix describing our imaging system has the above
required property, and finally if the object itself hap-
pens to be sufficiently sparse, we can uniquely recon-
struct the true object with far fewer measurements
than would be required in a system that did not in-
clude the non-negativity property. Of course, if an ob-
ject is not sufficiently sparse, we will not be able to
uniquely reconstruct it using the very same imaging
system. This is obviously a concern since the object is
unknown and we cannot know whether the process
will succeed.

In this paper, we take a different approach that
sheds light on this problem and, where possible, re-
duces to the uniquely solvable situation. Rather than
regularizing underdetermined problems to force a
unique solution when one does not exist, or guessing
that the object may be sparse, we compute bounds on
the set of potential solutions to the inverse problem
by directly estimating maximum and minimum
values each pixel may take. In the next section, we
start by considering the simplest linear case and

Fig. 1. (Color online) Input to forward model x, a vector of pixels
on the object, and output of model y, a vector of detector samples.
In this paper we are concerned with bounding the potential values
for each object point xk.
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formulate the bounds problem as an optimization
problem which may be generalized to arbitrary opti-
mization problems. Then we consider the non-
negative case and find that the conditions for bounds
are closely related to the conditions for finding a
unique sparse solution, but that the bounds simply
get looser when the object is not sufficiently sparse.
Finally, we consider practical issues with estimating
the bounds and provide simulated examples.

2. Theory

We start off by considering what is arguably the sim-
plest possible optimization problem. We have the lin-
ear system as our forward model. For the objective,
rather than a regularization function, we simply
use the maximization or minimization of a single
element of the unknown vector x (describing the ob-
ject). This gives us the following pair of optimization
problems for computing the bounds on a pixel:

x�min�
k � min

x
xk

Ax � y; (8)

x�mix�
k � min

x
xk

Ax � y: (9)

In this way, we compute the bounds on the kth
element of x. For the entire object, we will have 2n
of these optimization problems to solve, two per
pixel. This allows us to explore that set of solutions
to the forward model to some degree, to see what
range a given pixel can take and still potentially
fit our measured data. Equations (8) and (9) are
forms of the equality-constrained linear program [9],

max
x

cTx

Ax � y: (10)

Here, c is �ek and the vector ek is a vector of zeros,
with a one in the kth position, e.g., e3 � �0; 0; 1; 0�T
where n � 4.

The condition for a bounded solution to exist for
this optimization problem is c must be in the range
of AT, the transpose of A. In other words, a vector λ
must exist where

ATλ � ek: (11)

If there is no solution to this system, it means x�min�
k is

−∞ and x�max�
k is ∞, i.e., this pixel can hold any pos-

sible value. If a solution does exist then there are fi-
nite solutions for both the max and min bound. And
further (for this case) x�min�

k � x�max�
k , i.e., there is a

unique solution for this pixel. So we have two pos-
sible situations for this problem: either a pixel is
completely unbounded, or it is uniquely solvable.

As an example, we consider a system with two
unknowns and one equation, given in Eq. (12):

y � �a1; a2�
�
x1
x2

�
: (12)

In this case, the single measurement, the scalar y, is
a weighted sum of the two unknown pixel values, x1
and x2. The system matrix A consists of the single
row, �a1; a2�. So given the measurement y and matrix
A, we consider when we can find solutions to the lin-
ear programs of Eqs. (8) and (9). There are four of
these problems in total, to compute the min and
max for x1 and min and max for x2. For the max prob-
lem for x1, we have the condition for boundedness,

�
a1

a2

�
λ �

�
1
0

�
; (13)

where λ is a scalar. Clearly this requires a2 � 0,
which gives us a rather trivial case but is the only
way we can expect to bound the unknowns with this
single measurement. Otherwise every real value is
still possible for x1.

We can view the uniquely solvable case as a kind of
partial inverse of the matrix AT , just in terms of a
single unknown. In the case where A is square
and nonsingular and therefore we have a solution
ATλk � ek for all k � 1;…; n, we can combine the n
conditions as

AT�λ1; λ2;…; λn� � � e1; e2;…; en �
ATΛ � I; (14)

where Λ is the matrix with kth column λk.
Generally, we might have some pixels for which

unique solutions exist and some which have no
bounds. Any estimate which finds an x that solves
the system Ax � y will immediately give us all the
uniquely solvable elements. For example, we might
compute the least-length (pseudoinverse) solution.
The only question is which ones are truly bounded
and which are only finite in our estimate due to
the regularization inherent in the least-length solu-
tion. We can answer that by testing the system
ATλk � ek for consistency for all k � 1;…; n.

The equality-constrained case we just discussed
can be addressed analytically, for example using
the singular-value decomposition. But the advantage
of formulating the bounds as an optimization prob-
lem is we may generalize it to much more compli-
cated problems, such as by adding the constraint
that the solution x be non-negative, in which case,
our bounds problems become

x�min�
k � min

x
xk

Ax � y

x ≥ 0; (15)

1 April 2013 / Vol. 52, No. 10 / APPLIED OPTICS D57



x�mix�
k � max

x
xkAx � yx ≥ 0: (16)

These are cases of the standard form linear program
[10],

max
x

cTx

Ax � y

x ≥ 0; (17)

where c is�ek as before. Now, in addition to cases like
before, where a pixel can be uniquely solvable or
unbounded, we may also potentially have cases
where the pixel has a finite range of possible values.

If we consider the two-dimensional case again, we
can get an idea of when bounds exist. Figure 2
demonstrates a bounded case geometrically. The
solid line represents the solutions to Eq. (12), which
we can solve for analytically by solving for x2 as a
function of x1. The range of solutions for which the
variables are in the non-negative orthant give the
bounds depicted on the axes in the Figure:

x2 � −
a1

a2
x1 �

1
a2

y: (18)

We can see that we will have finite upper bounds as
long as both a1 and a2 are positive, in which case the
upper bound for x1 comes when x2 is zero and
vice versa.

Figure 3 demonstrates what happens when a2 is
negative. Now the solution set remains in the non-
negative quadrant for an infinite length and we have
no upper bounds. We do get a lower bound above zero
in this case, from the x-intercept. From this figure we
can also see that when a1 or a2 is zero, our solution
set would be vertical or horizontal. In such a case one
of the unknown pixels would be uniquely given with
upper and lower bounds that are equal.

The above 1-by-2 case gives us some intuition for
the property of A necessary for pixels to be bounded.
We can imagine that if A has only positive elements,

we would have a similar situation in any number of
dimensions. In fact, the requirement for finite pixel
bounds is slightly looser than this and we will now
derive it formally using duality theory.

The duals of the linear programs in Eqs. (16) and
(15) are

~x�min�
k � min

λ
yTλ

ATλ ≥ −ek; (19)

~x�max�
k � min

λ
yTλ

ATλ ≥ −ek: (20)

Duality theory tells us that the primal problems in
Eqs. (16) and (15) are feasible and bounded if the
corresponding dual problems in Eqs. (20) and (19)
are feasible and bounded. We assumed from the start
that our system model Ax � y was noise free and
therefore feasible, which means the dual is bounded.
So the only question is whether the duals are fea-
sible, and if so it means the primals are bounded.

For the dual problem in Eq. (19) to be feasible,
there must exist a solution to ATλ ≥ −ek. Obviously,
this is trivially possible by simply choosing λ � 0.
This makes sense as it is also obvious that the primal
problem for the min bound must be bounded, since
we are minimizing xk, which is constrained to be
non-negative. As a worst case it has a lower bound
of zero, which corresponds to the case where λ � 0.

So the interesting question is the existence of the
max bound. For the dual problem in Eq. (20) to be
feasible, there must exist a solution to ATλ ≥ ek. If
such a solution exists, say λ̂, then we also can say
a solution exists for ATλ ≥ αek for any scalar α, by
forming αλ̂. Therefore we may rewrite the require-
ment as: there exists a solution λ to ATλ � β where
β ≥ 0 and βk > 0. In words, the rowspace of A must
contain a non-negative vector which is positive in
the kth element. The conditions for the max and
min bounds are summarized in Table 1.

Fig. 2. (Color online) Two-dimensional case (two unknown pixels)
with a single measurement. The solid line represents the solution
to Ax � y and the shaded region represents the values of x within
the bounds. a�1� is the first (and only) row of A. In this case both
pixels are bounded as the solution set is only in the non-negative
quadrant for a finite range.

Fig. 3. (Color online) Two-dimensional unbounded case. Lower
bounds exist but not upper bounds, as the solution set to Ax � y
continues to infinity in the non-negative quadrant.
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The condition for the max bound for the non-
negative case is a generalization of the necessary
condition for a singleton solution to the non-negative
linear system discussed in the literature (see e.g.,
[8]). In our case, instead of a fully positive vector,
we only need one element to be positive with the rest
non-negative. Further, we have the singleton case
that if all pixels are bounded, then we have (for each
k) a solution λ�k� to ATλ�k� � β�k� where β�k� ≥ 0 and
β�k�k > 0. By forming the vector λ � λ�1� � λ�2� � � � �
�λ�n�, we have ATλ � β where β > 0. As the β�k�
resulting from each λ�k� is positive in the kth element
and non-negative in every other element, the result
fromthesumofallkofthemispositiveineveryelement.

Returning to our general requirement, to know if a
given pixel (i.e., the kth pixel) is bounded in our sys-
tem, we must determine if there exists a solution to
ATλ � β where β ≥ 0 and βk > 0. As above, we can
combine all the solutions to the systems for the differ-
ent pixels and form a vector β which is positive for all
of the bounded elements. In other words, since we do
not care whether βi > 0 or βi � 0 for i ≠ k, we can per-
form all the tests for different pixels simultaneously
by seeking a combined β that is positive in the maxi-
mum number of elements possible while still keeping
other elements non-negative. We can write this as
the following optimization problem:

K � max
λ;β

∥β∥0

ATλ � β

β ≥ 0; (21)

where we have used the so-called zero norm, ∥ · ∥0,
which returns the number of nonzero elements in
a vector. Normally, the zero norm is problematic as
it does not fulfil the conditions of a true vector norm
and so the more common goal of minimizing it leads
to nonconvex optimization problems. But here we are
maximizing it, plus we are constraining the vector to
be non-negative. And in the non-negative orthant the
zero norm (or any p-norm for small p, which may
serve as an approximation) is concave so maximizing
over it gives us a convex nonlinear optimization
problem.

With the optimization problem of Eq. (21) we can
find all the pixels which are bounded for a given
system in a single optimization. For the case where
the system matrix A is itself non-negative, the test
becomes even simpler. We only need to find the

columns which contain a positive element. This
can be done by computing β � AT1, where 1 is a vec-
tor of ones of appropriate size. The elements for
which β is nonzero (and therefore positive) are the
elements for which the pixels of a measured object
will always be bounded.

We can view the singleton solution as a special case
of a bounded solution. A singleton further requires
the additional condition that the unknown vector x
describing the object be sufficiently sparse. One
might imagine a continuum of problems where the
difference between the max and min bounds drops
from large to small to zero (singleton), as the true
vector x becomes increasingly sparse. For imaging,
it is much more useful to consider the effect of an in-
creasingly large data collection with the same object.
In this case, we would also expect the bounds to de-
crease until the object can be uniquely reconstructed.

As additional data is collected, bounds tighten
monotonically. This we can demonstrate by simply
noting that the feasible set (which we are finding
bounds for the elements of), F � fxjAx � y; x ≥ 0g,
can be viewed as the intersection of multiple sets.
Wemay describe the new feasible set, formed by add-
ing an additional measurement as a new row onto
the matrix A and a new element onto the end of
the vector y, as

F0 �
�
xj
�

A

A1

�
x �

�
y

y1

�
; x ≥ 0

�

� fxjAx � y; x ≥ 0g∩ fxjA1x � y1; x ≥ 0g
� F∩F1: (22)

So when we collect new data, the set of feasible sol-
utions is the intersection of the original feasible set
and the solutions which fulfil the new data. As an in-
tersection can only reduce the size of a set or leave it
unchanged, the bounds can only decrease or remain
unchanged.

Now we consider the problem of choosing which
additional measurement to perform, from multiple
options. For example,wehave a collection ofmeasure-
ments from a set of view angles andwish to decide the
best viewangle for the nextmeasurement. Thiswould
beuseful in an imaging scenariowhere performingac-
tualmeasurementswas costly but performing compu-
tationswas cheap.Aswedonothave thedata fromthe
new measurement yet, we must make our decision
purely from the change in the model.

Table 1. Summary of Optimization Problems to Find Bounds on kth Pixel, the Corresponding Dual Problems, and the Resulting Conditions for
Existence of Boundsa

Goal Primal Problem Dual Problem Condition

Equality constrained pixel minimization minx xk Ax � y maxλ yTλ ATλ � −ek ATλ � −ek
Equality constrained pixel maximization maxx xk Ax � y maxλ yTλ ATλ � ek ATλ � ek
Non-negativity constrained pixel minimization minx xk Ax � y x ≥ 0 maxλ yTλ ATλ ≥ −ek ATλ ≥ −ek
Non-negativity constrained pixel maximization maxx xk Ax � y x ≥ 0 maxλ yTλ ATλ ≥ ek ATλ ≥ ek
aIf a solution λ can be found to the condition, the corresponding max or min is finite. Note that the condition for the two equality-

constrained bounds are mathematically equivalent.
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Our approach here will be to select the new
measurement which provides bounds on the most
unbounded pixels. To do this, we do not need to know
the result of the new measurement, just the forward
model for it (e.g., A1 above).

For the equality-constrained system, our condi-
tions for existence of bounds are given in Table 1.
Note that the conditions for the minimum and maxi-
mum bound are equivalent; if a solution λ exists for
the maximum bound condition, we can use its nega-
tive to prove the minimum bound condition is ful-
filled. Hence we only need to consider one of the
conditions which, with a newmeasurement, becomes

�
A
A1

�
T
λ � ek: (23)

So in general for each potential measurement, we
would check if a solution exists to Eq. (23) for every
k, and then choose the measurement for which the
most pixels have solutions. We do not need to check
pixels for which we already know bounds exist with-
out the new measurement.

One way to do these tests more efficiently would be
to compute a basis for the nullspace using a singular
value decomposition (SVD) of the augmented matrix
of Eq. (23), then test whether each ek is orthogonal
to the entire basis simply by taking inner products
with the basis vectors. The computational cost of
this approach would be one SVD per potential new
measurement.

For the non-negativity-constrained system, the
conditions for existence of bounds are again given
in Table 1. In this case, the condition for the mini-
mum bound is trivially met as discussed earlier.
Since xk is constrained to be at least zero, we always
have zero as a lower bound. As a result, when consid-
ering existence of bounds, we only need consider the
condition for the maximum bound, which with new
measurements is

�
A
A1

�
T
λ ≥ ek: (24)

Again, we would need to perform this test for each
potential new measurement and for every pixel that
is not already known to be bounded. However, we
note that we can view this requirement as the system

�
A
A1

�
T
λ � β; (25)

where β is greater than or equal to zero and as dense
as possible (i.e., has fewest zero elements). Similar to
Eq. (21) we can write this as an optimization prob-
lem, yielding

K � max
λ;β

∥β∥0
�

A
A1

�
T
λ � β β ≥ 0: (26)

The approach, therefore, is to compute K using this
optimization program for each potential new meas-
urement, and pick the new measurement which
yields the highest K .

Finally, we address a couple practical issues in the
use of bounds. The first issue we will consider is er-
rors in the measurement vector y, such as from noise
and numerical precision. In practice we expect to get
y� Δy, where Δy is some unknown error. While this
might simply result in a variation in the resulting
image, which may be quantified by classical linear
algebra analysis, there is also a danger of the new
system, Ax � y� Δy, being incompatible. We ad-
dress this by relaxing the constraint a limited
amount, replacing the linear constraint Ax � y with
the nonlinear constraint ∥Ax − y∥ < δ, where δ is a
scalar meant to allow for the error in the measure-
ment. Here, we will use a value of δ that is very small
to primarily guard against numerical precision prob-
lems, without having a noticeable effect on the
bounds. In a noisy system this can be adjusted to be
larger.

The second practical issue we consider is the con-
dition of thematrixA. Just as amatrix inverse can be
very sensitive to noise if it is poorly conditioned, we
might expect bounds to be more sensitive to noise ifA
contains very small singular values (relative to the
largest one). With regularization techniques, this
is addressed by selecting a regularization parameter
large enough such that small singular values are
treated as if they were zero. We can get the same ef-
fect by performing a singular value decomposition of
A and zeroing out the singular values below a chosen
cutoff. This restricts the amount of change that
errors may cause to the bounds.

3. Simulation

The system we simulate is a multiview imaging ap-
proach, one view of which is depicted in Fig. 4. In a
multiview collection, we have the projection collected
from multiple positions around the scene, giving an
optical analog of computed tomography [11]. Here we
will assume the object is sufficiently small and far
away that the rays are approximately parallel when
crossing it, to eliminate this variable from the sys-
tem. Then the only parameter we need to describe
each view is its axial direction. For example, in Fig. 4,
an axial direction of 90° is used. The matrix A in this
case is essentially the Radon transform (or some
subset of its rows), which computes projections of
the object at the collected view directions, with ones
in the elements corresponding to visible pixels for a
given measurement point. For the case where we in-
troduce known occluding structures in the system,
we simply zero out the elements for the hidden pixels
at each view.

First, we demonstrate the application of estimat-
ing which pixels are bounded, via the optimization
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problems given in the last section. We consider two-
dimensional systems with known occluders in the
scene, restricting the view of the object. Two such
systems of occluders we used are given in Figs. 5(a)
and 5(b). For these systems, n � 31 × 31 � 961. And
m � 31 when we have a single view and 31 × 2 � 62
when we have two views. So a collected image is the

same size as a cross section of the object with unit
magnification. Note that Figs. 5(a) and 5(b) are not
the unknown object to be imaged but rather struc-
tures blocking our view. The object would be values
in the white region of these figures. The occluders are
known and used to compute the system matrix A, de-
pending on which views are used in the data collec-
tion. For this simulation, we produced system
matrices to demonstrate both Eqs. (21) and (26).
For the first case, we computed the number of
bounded pixels for each view in one-degree incre-
ments between 0 and 360. For the second case, we
simulated two views, with one of the views fixed at
0 and the other view at each direction in one-degree
increments between 0 and 360. The optimization
problems were solved using CVX [12,13]. The num-
bers of bounded pixels, K in Eqs. (21) and (26), are
plotted versus angle in Fig. 6. With a single view,
we can see how there is nothing to be gained at differ-
ent view angles with the single round occluder. How-
ever with multiple occluders, some views yield more
bounded pixels than others. For the two-view case,
we plotted the increase in bounded pixels over a sin-
gle view, so in both cases we see a second view at 0°
adds nothing as expected, and that there is a general
trend toward getting more pixels as the second view
is more opposite the first.

For the next simulation, we estimate the bounds
for different simulated objects for a collection using
an increasing range of angles (no occluding struc-
tures), again using two-dimensional objects. For
these systems, n � 21 × 21 � 441 and m � 21 × v
where v is the number of views used. The objects
are shown in Fig. 7, giving the brightness at each
point in the imaged scene. The objects are normal-
ized to a total mean-squared length of one. The first
two objects are designed to be equally sparse, while
the third object is simply random brightness in the
imaged scene, and hence is as dense as possible.

A matrix which implements the collection of Fig. 4
was produced, which simulates the collection of
multiple views of an object over a specified range
of views in one degree increments. For example,

(a) (b)

Fig. 5. (Color online) Simulated occluding structures.

(a) (b)

Fig. 6. (Color online) Polar plots of number of pixels seen given a single view for each view angle, and given two views, one at 0° and the
other at the given range of view angles.

Fig. 4. (Color online) Pinhole camera in the high frequency limit.
We assume there is no occlusion, so each point on the detector
receives light from sources along a ray through the scene.
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the matrix for the 10° collection simulated ten
equally spaced views a degree apart. The matrix
was then conditioned by performing a singular-value
decomposition and zeroing out singular values that
were less than two orders of magnitude smaller then
the maximum singular value. The bounds were esti-
mated using the non-negative optimization problem
with a δ value of 10−6 to protect against numerical
precision issues. The optimization problems were
again solved using CVX for finding the max and
min bound on each pixel.

Examples of the bounds for the first object are
shown in Fig. 8. We see that for increasing collection
sizes, the max bounds decrease until they reach the
true pixel values. Similarly, the min bounds increase
for larger collections (where the true values are
above zero). At around 40° collection size, the bounds
are equal, demonstrating that it is here our sparser
objects can be uniquely resolved, though the dense
object still cannot.

In Fig. 9, we compute the bound range (maximum
bound minus the minimum bound) averaged over the

entire scene for each of the three objects for different
ranges of collection sizes between 0 and 90°. We find
that bounds for the first two objects decrease at
roughly the same rate with increasing collection size
but the third object continues to have unequal max

(a) (b) (c)

Fig. 7. (Color online) Two-dimensional simulated objects.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8. (Color online) Max (a–d) and min (e–h) bounds for each pixel given the collected data for a system with the stated total collection
size. Least-mean square estimate of image with the given collections shown for comparison (i–l).

Fig. 9. (Color online) Average bounds for the three objects versus
total collection size.
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and min bounds for a longer range, as would be
expected due to its lower sparsity.

4. Discussion

In this paper we have demonstrated the use of pixel
bounds for computational imaging, with both theo-
retical and practical applications. The equality-
constrained case was considered first, which is useful
as a connection between the more classical ap-
proaches to treating linear systems and the applica-
tion to more difficult constrained cases. In the
equality-constrained case we also demonstrate how
some pixel values may still be available in an ill-
posed system. The case of a partially solvable image,
while very unlikely for a random matrix, may occur
quite easily in computational imaging as the collec-
tion geometry is often very structured.

The inequality-constrained case is more interest-
ing in that we may have bounds which are not tight,
i.e., both max andmin are finite but not equal to each
other. Further, we found the conditions for this to oc-
cur. In optical imaging, the condition (rowspace inter-
secting positive orthant) is very common. With an
intensity-imaging approach for, example, the matrix
itself will also be non-negative and it is very easy to
show that the conditions of Table 1 are satisfied. The
simulated system was such a case, where we saw fi-
nite bounds for every pixel and for every collection.

An important issue requiring further study is the
effect of noise. In this paper, we considered solely the
linear case. Ideally, to address noise, one would re-
turn to a problem such as Eq. (4), which would likely
require a significantly different analysis and a non-
linear problem. However, we can address limited lev-
els of noise by relaxing the constraint as we did by
using the nonlinear constraint ∥Ax − y∥ < δ, which
roughly raises the bounds by δ, scaled by a term de-
pending on the matrix condition. We can further con-
trol the matrix condition by truncating the singular
vectors limiting this effect. The result is a loosening
of the bounds.

Bounds are also a useful tool to approach non-
negative systems where a unique sparse re-
construction is desired. In such a system, we must
have the conditions hold for every pixel, plus the ob-
ject must be sufficiently sparse. The exact (both
necessary and sufficient) condition for unique
reconstruction is very difficult to compute for a ma-
trix. But we may instead compute the bounds, which

immediately tell us if a given object may be uniquely
estimated with the system, and further, give us infor-
mation even when it cannot be uniquely determined.

We also considered a strategy for actively collect-
ing measurements in such a way that bounds may
be made finite as fast as possible. This is useful in
cases where the cost of performing measurements
is greater than performing the computational effort
of choosing the best measurement, for example if
ionizing radiation is to be used.

We gratefully acknowledge helpful advice and
assistance from Prof. Philip Gill.
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